WWW.BOOK.XLIBX.INFO
FREE ELECTRONIC LIBRARY - Books, abstracts, thesis
 
<< HOME
CONTACTS

Pages:   || 2 |

«Abstract Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness ...»

-- [ Page 1 ] --

Journal of Central European Agriculture, 2014, 15(2), p.119-128 DOI: 10.5513/JCEA01/15.2.1462

Usage of abrasion-resistant materials in agriculture

Využití otěruvzdorných materiálů v zemědělství

Jiří VOTAVA*

Mendel University in Brno, Faculty of Agronomy, Department of Engineering and Automobile

Transport. Zemědělská 1, 613 00 Brno, Czech Republic, * correspondence: jiri.votava@mendelu.cz

Abstract

Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm ČSN 01 5084, which is a test of abrasion wear on abrasive cloth.

Keywords: abrasive-resistant steel, abrasive wear, agriculture, microhardness, structure, soil management Abstrakt Zemědělské stroje pro zpracování půdy jsou zatíženy značným abrazivním opotřebením. Předložený příspěvek analyzuje vhodnost technických materiálů pro výrobu vyměnitelných částí plužního tělesa. Jedná se především o dláta i celé plužní ostří. K testům byly zvoleny otěruvzdorné materiály s rozdílnou mikrostrukturou.

Jednalo se o kategorie ocelí s mikrostrukturou austenitickou, martenzitickobainitickou a karbidickou. Jako etalon byla použita ocel se strukturou perlitickoferitickou. Testy abrazivní odolnosti byly provedeny dle ČSN 01 5084. Jedná se o test abrazivního opotřebení na brusném plátně.

Klíčová slova: abrazivní opotřebení, mikrotvrdost, otěruvzdorná ocel, struktura, zemědělství, zpracování půdy Detailní abstrakt Vlivem opotřebení strojních součástí dochází k odstávce celého stroje nebo dokonce celé výrobní linky. Jednou z oblastí, kde nastává masivní opotřebení, je zpracování půdy. Abrazivní opotřebení lze tedy definovat jako nežádoucí změnu povrchu nebo rozměrů tuhých těles, způsobenou buď vzájemným působením funkčních povrchů, nebo funkčního povrchu a abrazivního media.

Cílem předloženého příspěvku je otestovat vhodnost několika technických otěruvzdorných materiálů pro použití a výrobu funkčních částí zemědělských strojů Votava : Usage Of Abrasion-Resistant Materials In Agriculture na zpracování půdy. Jedná se o materiály s rozdílnou vnitřní strukturou i mechanickými vlastnostmi. Jako porovnávací etalon byla zvolna ocel 12 050.

V počáteční fázi identifikace jednotlivých materiálů byla změřena jejich tvrdost dle ČSN EN 23878 (metoda dle Vickerse. Následovala analýza vnitřních strukturních fází jednotlivých materiálů. Dle metalografických výbrusů byly zjištěny nehomogenity v oceli 12 050. Na připravených metalografických preparátech bylo provedeno rovněž měření mikrotvrdosti jednotlivých strukturních fází. Dle provedených testů lze konstatovat korelaci mezi tvrdostí, základní strukturou i mikrotvrdostí zkoušených vzorků.

Pro analýzu abrazivního opotřebení byla zvolena zkouška dle ČSN 01 5084. Jedná se o stanovení odolnosti kovových materiálů proti abrazivnímu opotřebení na přístroji s brusným plátnem. Toto zařízení bylo zvoleno z důvodu zachování konstantních podmínek během zkoušky. U zařízení s volnými částicemi dochází při delším časovém intervalu trvání zkoušky ke značné degradaci používaného abrazivního média.

Z výsledků jednotlivých analýz je v závěru publikace predikována vhodnost testovaných materiálů pro použití na výrobu vyměnitelných funkčních částí zemědělských strojů, které přichází do přímého kontaktu s půdou.

Introduction Wear is an undesirable change of surface or size of solids, which is cause either by mutual interaction of functional surfaces or by a functional surface and a medium.

The trend is to use materials which are resistant to both abrasion and other degradation forces, such as corrosion or mechanical fatigue. There are technical materials with middle hardness and high tenacity (Blaškovič, et al, 1990, Suchánek, et al, 2007).

Considerable weight losses caused by abrasion wear can be observed in functional parts of soil-processing machines. Massive losses can be eliminated by laser deposition (Daňko, et al, 2011). However, the deposited material may increase the reluctivity of the whole system. The sence of abrasive wear of soil-processing tools is production of microchipping from the surface of functional tool. The size of the microchipping is dependent on many factors, mostly microstructure of the base material, sharpness of abrassive particles and humidity of the abrading agent (Vysočanská, et al., 2012).

Abrasive wear in agriculture is also observed at tools which do not belong to the soilprocessing machines, such as drill coulters, active or pasive elements of beet lifters, etc. Working life of these tools can be prolonged by a well-selected base material or using hardmetal weld deposits (Čičo, et al., 2011a; Dushyant et al., 2010; Lechner and McColly, 1959). Nevertheless, the disadvantage of hardmetal coatings is a significant mixture of welded metal with base material and also heat-affected area in the neighbourhood of the weld bead.





Material and Methods In the soil processing abrasion wear has the biggest influence on degradation of machine parts. They are mostly parts which are directly affected by the soil (Kotus, et al., 2011a, Čičo, et al., 2011b). Materials used for production of tools which come into Votava : Usage Of Abrasion-Resistant Materials In Agriculture a direct contact with abrasive particles, can be put into the category of abrasionresistant steels. The fitness of technical materials for production of soil-processing tools can be tested by different ways. There are tests with fixed or free abrading agents or apparatus with a layer of free abrading agents between bearing surfaces.

The test used for this paper was test with fixed abrading agents according to the norm ČSN 01 5084, it is an abrasive cloth test. Tested materials were selected with reference to their usage not only in agriculture, but also in building and transport industries.

Characteristics of tested materials Steel 12 050: this material is being mostly used for extensively stressed machine parts and dynamically stressed components. After an appropriate heat-treatment the material performs a good tenacity. Chemical composition of this material is showed in Table 1.

–  –  –

Samples made of the steel 12 050 were used as etalons. From this reason, the samples were not heat treated, so the base structure was formed by ferrite and pearlite.

Creusabro 4 800: this material is mostly used for renovation of abrasive worn machine parts. It is also used in mining. It is a material with a content of residual austenite, which is subsequently able to transfer itself (due to strains or pressure) to secondary martensite.

–  –  –

Creusabro M: It is abrasive-resistant manganese steel, resistant to dynamic abrasive wear. This steel is used mostly for equipments which require a high resistance to wear in the form of strong shocks, such as crushing boards or sheeting of air-blast machine.

–  –  –

Votava : Usage Of Abrasion-Resistant Materials In Agriculture Setudor 204: it is a high-solidity material used for bladings of projectile wheels of airblast machines. Samples were gained directly from the manufacturer without the possibility to identify their chemical composition. Structure of the material is composed by tungsten carbide stored in a basic metal matrix.

Results and Discussion Measurement of hardness of tested samples according to the national standard ČSN EN 23878 Hardness is being defined as material resistance towards penetration of foreign matters. In order to achieve minimal roughness of cutting surface of samples for hardness measurement were prepared on metallographic saw Mikron 110. In order to accurately measure lengths of diagonals of diamond pyramid pressed into the sample, the sample surface has to be straight and smooth. (Pošta, et al., 2002) Measurement of tested samples was processed according to Vickers. A diamond pyramid with the apex angle of 136 ° was pressed into the sample. Load pressure for this sample was 98.1 N (HV10) for 10 s. Measurement was processed on five places and an average hardness was calculated. Measured values as well as the average value are recorded in Table 4.

–  –  –

Microstructure of tested materials Mechanical characteristics of any material are influenced by its inside microstructure.

In order to analyze the inner structure, metallographic samples were prepared.

The goal of the metallographic observation is to assess the quality of analyzed steel, especially purity and content of structure elements after heat treatment.

Metallographic microscope Neophot 21 was used for this analysis, magnification of 800 times was used for Figs. 1–4. Afterwards, metallographic specimens were used also for microhardness measurements.

Purity of the material 12 050 is not on a high level. Metallographic analysis has found sulphides and oxides coming from the production process in this material. As it is apparent in Figure 1, the structure of untreated steel is formed by a mixture of ferrite and pearlite.

Votava : Usage Of Abrasion-Resistant Materials In Agriculture

–  –  –

Abrasion-resistant steel Creusabro 4800 performs much better characteristics. There were no sulphides found in all of the metallographic samples; the structure is formed by a mixture of bainite- martensite needles, see Figure 2. This material has a high ability of deformation hardening, which is used in abrasive wear. On one hand the presence of carbides Cr + Mo + Ti increase the Microhardness; on the other hand, carbides may be broken out of the basic matrix. (Čičo, et al., 2011c, Bednář, et al., 2012)

Figure 3: Creusabro M Figure 4: Setudor 204

Stainless steels class 17 can be divided into three categories; there are austenite, martensite and ferritic steels. For the experiment austenite steel, whose structure is formed by austenite only and carbides at grain borders (see Figure 3), was chosen. It is manganese steel, which is also called Hadfield steel. In order to show carbides, it is necessary to use an electron microscope. This material is characterized by excellent hardening characteristics at severe concussions.

Votava : Usage Of Abrasion-Resistant Materials In Agriculture Figure 4 shows metallographic scratch pattern of material Setudor 204, which is characteristic by lines of carbides stored in the basic metal matrix.

Microhardness according to the national standard ČSN EN ISO 6507-1 Microhardness was measured with Hanneman microhardness device, which is a part of a metallographic microscope Neophot 21, using a standard Vickers method.

A diamond-tipped cone of 136° using the force of 0.9806 N is indented into the material.

The measurement was undertaken using three samples for each individual steel and an average was counted and recorded in Table 5.

–  –  –

Results of measured microhardness values according to Hanneman correlate with macrohardness of measured samples. As is apparent from Figure 5, steel 12 050 is formed by pearlite-ferrite structure with a high pearlite lamella dispersity. At the same magnification of both of the microstructures (500 times), a double length of impress of the testing pyramid is apparent, compare Figs. 5 and 6.

Votava : Usage Of Abrasion-Resistant Materials In Agriculture Wear testing according to the national standard ČSN 01 5084 The laboratory testing of the wear on abrasive cloth is based on the norm ČSN 01 5084 (see Figure 7). The tested sample is held in a holder and pressed by a weight to the abrasive cloth. During the testing, the horizontal disk with the abrasive cloth is rotated and the tested body is moved from the centre to the edging of the abrasive cloth. After the given length of the wearing course, the terminal switch will stop the machine. The specimens are cleaned and the weight decrease determined by weighing, see Fig. 8.

–  –  –

Votava : Usage Of Abrasion-Resistant Materials In Agriculture There were created 3 series of tested materials and weight losses were measured, which are depicted in Figure 8. Individual samples were prepared on metallographic saw using the method of accurate cutting. Important factor when preparing samples was to guarantee optimal cooling of the sample. Maximal removal of heat from the cut place eliminates heat affected area, which could result in weight losses in the first measurement.

1,40 1,20

–  –  –

Figure 8: Weight losses of tested materials Figure 8 shows weight losses of tested samples after each 50 metres on abrasive cloth. As the test is processed under constant conditions, weight losses of the base material are almost linear.

Laboratory tests of abrasive wear have a considerable predicative ability when comparing wear of a particular group of tested materials. As the testing conditions are strictly defined, only one particular effort, that is wear, is guaranteed. (Kotus, et al., 2011b). However, in normal technical operation a combination of more wear types appears at the same time, that is mainly a combination of abrasive and erosive wear.

One of the crucial factors influencing abrasive resistance is its hardness. However, it is necessary to take into consideration also the chemical composition of the steel and its heat treatment. (Votava, et al., 2007, Stodola, et al., 2008) Processed tests have evidently proved a low abrasive resistance of steel 12 050.

This steel was used as an etalon to which other values were compared.

Microhardness is only around 200 HV, and the microstructure is formed by a mixture of ferrite and pearlite. Wear of the sample after 250 metres was 1.257 g. Even though the steel contains only 0.42 % of carbon, it is not advisable to use this material in operations with an enormous abrasive stress.



Pages:   || 2 |


Similar works:

«Conditions and results of the accession negotiations in the milk and beef sectors in Poland and the Czech Republic Podmínky a výsledky jednání o vstupu do Evropské Unie. P ípad produkce mléka a hov zího masa v Polsku a v eské republice. Dr. M. Bavorova, Dr. H. Hockmann, Dr. A. Pieniadz Institute of Agricultural Development in Central and Eastern Europe; Theodor-Lieser Str., 06108 Halle, Germany Tel: 0049 0345 2928 224 e-mail: bavorova@iamo.de www.iamo.de Abstract: The paper reviews...»

«Member-funds and cooperative performance Rajesh Agrawal Indian Institute of Management Ahmedabad K V Raju Institute of Rural Management Anand K Prathap Reddy Institute of Rural Management Anand R Srinivasan Indian Institute of Management Bangalore M S Sriram Indian Institute of Management Ahmedabad September 2002 Corresponding Author. Member-funds and cooperative performance Rajesh Agrawal, K V Raju, K Prathap Reddy, R Srinivasan and M S Sriram Abstract This research examines the role of...»

«DOI:10.12806/V13/I2/I1 Spring 2014 Journal of Leadership Education Leadership That Settled the Frontier Barry L. Boyd Associate Professor Department of Agricultural Leadership, Education, & Communications Texas A&M University College Station, TX 77843-2116 b-boyd@tamu.edu Abstract This idea brief explores the leadership lessons displayed by the characters of Louis L’Amour’s western novels. Western fiction can be a powerful tool to engage students and demonstrate many leadership theories and...»

«Connecting Across Language and Distance: Linguistic and Rural Access to Legal Information and Services Karen Cohl and George Thomson December 2008 Connecting Across Language and Distance: Linguistic and Rural Access to Legal Information and Services Final report of the Linguistic and Rural Access to Justice Project This is the report of the Linguistic and Rural Access to Justice Project conducted by Karen Cohl and George Thomson at the request of The Law Foundation of Ontario. We would like to...»

«Journal of Central European Agriculture, 2015, 16(4), p.476-488 DOI: 10.5513/JCEA01/16.4.1655 Sensitivity of selected crops to lead, cadmium and arsenic in early stages of ontogenesis Citlivosť vybraných poľnohospodárskych plodín na olovo, kadmium a arzén v skorých štádiách individuálneho vývinu Beáta PIRŠELOVÁ*, Andrej TREBICHALSKÝ and Roman KUNA Constantine the Philosopher University in Nitra, Faculty of Natural Sciences, Department of Botany and Genetics, Nábrežie mládeže...»

«Journal of Central European Agriculture, 2016, 17(1), p.40-47 DOI: 10.5513/JCEA01/17.1.1666 Differentiation of stress load resistant calves by the help of insulin-like growth factor–I (IGF–I) in serum Diferencovanie teliat odolných stresovej záťaži pomocou inzulínu podobného rastového faktoru–I (IGF–I) z krvného séra Juraj PETRÁK* and Ondrej DEBRECÉNI Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Tr. A. Hlinku 2, 949 76 Nitra, Slovak...»

«CONDITION ASSSESSMENT OF ELECTRICAL EQUIPMENT IN POWER PLANTS Nagu Srinivas, DTE Energy Technologies Dr. Oscar Morel, DTE Energy Technologies 37849 Interchange Dr., Farmington Hills, MI 48335 Tel:(248) 427-2243 Fax: (248)427-2336 Email:srinivasn@dteenergy.com Abstract— Plant Operations personnel can avoid a forced shutdown by applying a predictive maintenance program to power cable and equipment systems. However, the condition of an electrical power system, down to the individual component...»

«Gwen Varley, Student Participant West Central Valley High School Stuart, IA Sustainable Agriculture in Honduras On March 8, 1968, William S. Gaud gave a speech before the Society for International Development at the Shoreham Hotel in Washington, D.C. He spoke of an exciting future for the world of agriculture. Indeed, astonishing events had recently come to pass. All over the world, countries were reporting record-shattering harvests. Poor farmers were sowing what must have seemed like magic...»

«IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 3, Issue 8, Aug 2015, 7-20 © Impact Journals OPTIMIZATION OF JUTE GEOTEXTILES IN PAVEMENT DESIGN STATE OF THE ART SHIVANI SRIDHAR & PAVITHRA L Civil Engineering Department Meenakshi Sundararajan Engineering College, Chennai, Tamil Nadu India ABSTRACT Permeable textiles, used in association with geotechnical engineering related material, as an integral part of a man...»

«Sophie Spencer Director CPRE Avonside Poole Court, Yate director@cpreavonside.org.uk Campaign to Protect Rural England, Avonside branch Response to Bath Park and Ride Consultation October 2015 Summary CPRE Avonside is strongly opposed to a further park and ride facility being introduced to the East of Bath. It would cause serious damage to the Avon Green Belt, and be a negative visual intrusion on the Cotswold AONB and the Bath World Heritage City. We feel that the supposed benefits of a park...»





 
<<  HOME   |    CONTACTS
2016 www.book.xlibx.info - Free e-library - Books, abstracts, thesis

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.