FREE ELECTRONIC LIBRARY - Books, abstracts, thesis

Pages:   || 2 | 3 | 4 | 5 |   ...   | 8 |

«Below is the copyedited final draft of a BBS target article that has been accepted for publication. This updated preprint has been prepared for ...»

-- [ Page 1 ] --

To be published in Behavioral and Brain Sciences (in press)

© Cambridge University Press 2007

Below is the copyedited final draft of a BBS target article that has been accepted for

publication. This updated preprint has been prepared for formally invited commentators.

Please DO NOT write a commentary unless you have been formally invited.

The evolution of foresight: What is mental time travel, and is it unique

to humans?

Thomas Suddendorfa and Michael C. Corballisb

a School of Psychology University of Queensland Brisbane, Qld 4072, Australia;

t.suddendorf@psy.uq.edu.au b Department of Psychology University of Auckland Auckland 1142, New Zealand m.corballis@auckland.ac.nz Corresponding author: Thomas Suddendorf Running head: Mental time travel Abstract: In a dynamic world, mechanisms allowing prediction of future situations can provide a selective advantage. We suggest that memory systems differ in the degree of flexibility they offer for anticipatory behavior and put forward a corresponding taxonomy of prospection. The adaptive advantage of any memory system can only lie in what it contributes for future survival.

The most flexible is episodic memory, which we suggest is part of a more general faculty of mental time travel that allows us not only to go back in time but also to foresee, plan, and shape virtually any specific future event. We review comparative studies and find that, in spite of increased research in the area, there is as yet no convincing evidence for mental time travel in nonhuman animals. We submit that mental time travel is not an encapsulated cognitive system, but instead comprises several subsidiary mechanisms. A theater metaphor serves as an analogy for the kind of mechanisms required for effective mental time travel. We propose that future research should consider these mechanisms in addition to direct evidence of future-directed action. We maintain that the emergence of mental time travel in evolution was a crucial step toward our current success.

Keywords: animal cognition; cognitive evolution; comparative psychology; episodic memory;

memory systems; mental time travel; planning; prospection He said “What’s time? Now is for dogs and apes! Man has Forever!” —Robert Browning, A Grammarian’s Funeral

1. Introduction Time travel may never be physically possible (Holden 2005). For now at least, humans can travel in time only in their minds. Mental time travel is a term we coined to refer to the faculty that allows humans to mentally project themselves backward in time to relive, or forward to prelive, events (Suddendorf & Corballis 1997). Past and future travels share phenomenological characteristics and activate similar parts of the brain. Mentally reliving past events is also known as episodic memory in the literature and has been the topic of intense research efforts (e.g., Tulving 1984; 2005). By contrast, mental construction of potential future episodes has only very recently begun to draw attention. Nevertheless, there is growing recognition that mental time travel into the past and future are related, and that the ultimate evolutionary advantage must lie with the capacity to access the future (Dudai & Carruthers 2005; Suddendorf & Busby 2003;

2005; Suddendorf & Corballis 1997; Tulving 2005). Though we may often get it wrong, humans have in general been extraordinarily successful in foreseeing, planning, and shaping the future, and indeed allowing us to influence the earth itself in extraordinary but not always benevolent ways (Dawkins 2000).

Since present behavior can increase or decrease an individual’s future survival chances, one might expect many species to have evolved anticipatory capacities. The world is dynamic, and organisms that can pick up on significant regularities (e.g., fluctuations in food availability) and act in tune with them (e.g., being in the right place at the right time) have an advantage over those that do not. Many organisms actively influence their own futures by creating an environment that suits their needs (so-called niche-construction, Odling-Smee et al. 2003), such as when a beaver dams a stream. However, future-oriented mechanisms vary in flexibility, and relatively inflexible mechanisms will often suffice.

Through natural selection, some species have evolved behavioral predispositions to exploit significant long-term regularities (e.g., seasonal variations). A hibernator, for example, may hoard food for an impending winter even if individually it has never experienced a winter. Such instinctual future-directed behavior serves well, as long as the environmental pattern persists.

But even long-term regularities may at times change drastically (e.g., climate change), and organisms fixed to a pattern that no longer prevails are disadvantaged relative to those that have more flexibility. This can be achieved by individual fine-tuning mechanisms, such as critical periods for parameter setting, imprinting, and other forms of learning. Indeed, learning and memory in general may be regarded as future-oriented adaptations that allow an individual, rather than a population, to adjust to local change and track short-term regularities.

Here we propose a taxonomy of how memory systems differ in what they provide for the future.

We argue that mental time travel is the most flexible of those memory-based systems, and the most recently evolved. We then review evidence for mental time travel in nonhuman animals, and suggest a framework that identifies subsidiary mechanisms of mental time travel that nonhuman species may or may not possess.

First, though, it is useful to distinguish perceptual systems that detect and track relevant information from action systems that control behavior itself. Many animal species, as well as human neurological patients and children, show dissociations between what they know in the perceptual domain and what knowledge they can use to control action (Hauser 2003; Sterelny 2003). Perceptual systems differ in the robustness of their tracking (e.g., use of single versus multiple perceptual channels to track significant aspects of the environment) and storage of information (e.g., knowing what is currently where). Action systems differ in the flexibility or response breadth they provide (Sterelny 2003); for example, they may include relatively narrow options such as hibernating or storing food, or highly flexible options like cooking and preserving food in diverse ways. Organisms may have sophisticated mechanisms to track temporal information and yet inflexible action systems, and vice versa. Further, the link between the two can be direct, or bottom-up, when perception of a stimulus triggers a response, or they can be top-down, mediated by internal representations (i.e., declarative memory). Top-down mediation offers the opportunity for representations decoupled from the immediate input to drive action flexibly and independently.

2. A taxonomy of future-oriented cognition Figure 1 shows a widely accepted taxonomy of human memory systems (e.g., Miyashita 2004;

Squire 1992) and illustrates how this can serve as a basis for a parallel taxonomy of adaptation to the future.

Nondeclarative or implicit memory systems are so called because, in humans, their content cannot be declared or verbalized (Tulving 1985). They allow stimulus-driven prediction of regularities. For example, through association, a conditioned stimulus (e.g., a sound) predicts the future arrival of an unconditioned stimulus (e.g., food) and triggers a future-directed response (e.g., salivation). In operant conditioning a behavioral response predicts a certain outcome (reward). Learning theory has described how organisms use associations to predict the near future, and a growing literature is mapping its neurophysiological basis (e.g., O’Doherty 2004;

Schultz 2006). Nonassociative changes in behavior, such as habituation, also can be understood in terms of expectations (e.g., that the situation stays unchanged). All these nondeclarative memory systems allow behavior to be modulated by experience such that the organism gains a future advantage. We may call the resultant future-directed mechanisms “procedural” because flexibility extends only to learning to respond to current indicators of upcoming events. The behavior is stimulus-bound, or better, bound to the perceptual tracking of stimuli.

Figure 1. Memory and prospection systems.

The common taxonomy of memory systems (left), after Squire (1992), and its proposed prospective counterpart (right).

Declarative or explicit memories provide greater flexibility because they can also be voluntarily triggered top-down from the frontal lobes, rather than bottom-up through perception (Miyashita 2004). They may be regarded as decoupled representations that are no longer directly tied to the perceptual system. In humans, these memories are conscious and at least partly verbalizable (Tulving 1985; 2005). Declarative memory can be subdivided into semantic memory and episodic memory. Semantic memory contains general knowledge, allowing learning in one context to be voluntarily transferred to another. This capacity provides the basis for inferential and analogical reasoning. Semantic memory may thus enable semantic prospection that is voluntary and not stimulus-bound. Nevertheless, such prospection is restricted in that it builds on a knowledge base that is impervious to particularities of the learning event itself. It is the second component of declarative memory, namely, episodic memory, that gives rise to the notion of mental time travel.

2.1. Toward a definition of mental time travel

Episodic memory, in contrast to semantic memory, provides access to the personally experienced event, rather than just the knowledge extracted from the event. The phenomenological experience of remembering, or what Tulving (1985) calls autonoetic or self-knowing consciousness, such as recollecting where and when one learned that Wellington is the capital of New Zealand, is different from merely knowing that fact. This distinction is supported by experimental manipulations, imaging studies, and dissociations in impairments following brain injury (Gardiner et al. 2002; Henson et al. 1999; Klein et al. 2002b; Tulving 2005). Thus, amnesic patients, such as K.C., may know facts (e.g., the difference between stalagmites and stalactites) and procedures (e.g., how to play chess), without being able to recall a single personally experienced event leading to knowing them (Tulving 2005). Episodic memory is not about regularities, but about reconstructing particularities of specific events that have happened to the individual.

In effect, then, episodic memory implies a mental reconstruction of some earlier event, including at least some of the particularities of that event, such as the principal characters involved, the actions that took place, the setting, and the emotional reactions. Metaphorically speaking, it might be regarded as the result of a mental journey into the past. This idea is readily extended to the future. Based on previous experiences, we can imagine specific events in the future, including the sorts of particularities that have characterized events in the past. Mental time travel into the future might include the planning of some specific event, such as a dinner party, or it might involve the mental anticipation of some event that we know to be scheduled for some future date, such as a job interview. Again, though, there is a distinction between merely knowing that some event will occur, such as that the sun will set, and mentally creating an event, such as a sunset actually experienced, with gradual fading of light, and the blue flash on the horizon as the last image of the sun disappears.

The mental reconstruction of past events and construction of future ones may have been responsible for the concept of time itself, and the understanding of a continuity between past and future. Having a concept of time allows us to understand that past and future are on the same dimension, and what was the future eventually becomes the past (that is, unless the universe comes to an end). Mental time travel allows us to imagine events at different points along this continuum, even at points prior to birth or after death. This means that mental time travel is a generative process, incorporating known elements but arranged in particular ways to create the experience of events that are actually occurring. Even episodic memory may not be a faithful recreation of a past event. False memories have been widely documented (e.g., Loftus & Ketcham 1994) and are readily created in the laboratory (e.g., Roediger & McDermott 1995).

This means that mental time travel cannot be defined in terms of the veracity of the content. We know what mental time travel is because we can introspectively observe ourselves doing it and because people spend so much time talking about their recollections and anticipations.

A major challenge, though, is to establish a definition, or set of criteria, that might identify mental time travel in nonhuman animals that cannot express their experiences in words. This problem is akin to the decades-long search for behavioral criteria for theory of mind (see sect.

4.3) in nonhuman animals (Heyes 1998; Povinelli & Vonk 2003; Premack & Woodruff 1978;

Suddendorf & Whiten 2003; Tomasello et al. 2005; Whiten & Byrne 1988). Tulving (1972)

originally defined episodic memory in terms of the kind of information it appears to store:

Pages:   || 2 | 3 | 4 | 5 |   ...   | 8 |

Similar works:

«Diplomarbeit Titel der Diplomarbeit Die kindliche Emotionsregulation im familiären Kontext unter besonderer Berücksichtigung der Eltern als Modell verfasst von Natalie Zwölfer angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag. rer. nat.) Wien, 2013 Studienkennzahl lt. Studienblatt: A 298 Studienrichtung lt. Studienblatt: Diplomstudium Psychologie Betreut von: Ass.-Prof. Mag. Dr. Harald Werneck II III Danksagung An dieser Stelle möchte ich mich zuerst bei meinem...»

«NORMATIVE PÄDAGOGIK ERZIEHUNG UNTER DEM NAZI-DIKTAT I. Die Nationalsozialistische Ideologie Das Gedankengut des Nationalsozialismus ist kein geschlossenes System, es ist vielmehr ein Zusammenschluß von verschiedenen Wertvorstellungen, Ansprüchen und Ressentiments. Leitbild dafür ist Hitlers erstes Buch „Mein Kampf„ von 1925, aus dessen rassistischen Grundannahmen sich die folgenden zentralen Elemente der NS-Ideologie ableiten lassen: „Erstens die sozial-biologische Unterscheidung von...»

«The Chronicle Review September 26, 2014 Why Academics Stink at Writing By Steven Pinker T ogether with wearing earth tones, driving Priuses, and having a foreign policy, the most conspicuous trait of the American professoriate may be the prose style called academese. An editorial cartoon by Tom Toles shows a bearded academic at his desk offering the following explanation of why SAT verbal scores are at an all-time low: Incomplete implementation of strategized programmatics designated to...»

«Zum Spiel-Raum zwischen Narzißmus und Triebdynamik1 Zusammenfassung Die Autorin versteht das Spiel im Rahmen der Kinderanalyse als die via regia zum Unbewußten des Kindes, das den Spielraum zur Bearbeitung von Konflikten schafft. Innerhalb dieses Spielraumes finden dialektische Prozesse statt. Ausgehend von Beobachtungen in Kinderanalysen wird die Dialektik zwischen Narzißmus und Triebdynamik beschrieben, die bei psychisch kranken Kindern häufig aus dem Gleichgewicht geraten ist. Spiele...»

«Building the Data Warehouse: Getting Started BY W. H. Inmon BUILDING THE DATA WAREHOUSE: GETTING STARTED The journey of a thousand miles begins with a single step old Chinese proverb Perfection is spelled P-A-R-A-L-Y-S-I-S Winston Churchill In any large undertaking, getting off the mark to a good start is the first step toward success. And getting off to a good start is certainly at the heart of the success of the data warehouse environment. Nothing delays success and destroys momentum in the...»

«Iroquois Native American Cultural Influences in Promoting Women’s Rights Ideologies Leading Up to the First Women’s Rights Convention in Seneca Falls on the 19th and 20th of July, 1848 Willow Michele Hagan To what extent did Iroquois Native American culture and policies influence the establishment of the first ever women’s rights convention at Seneca Falls on the 19th and 20th of July, 1848? Abstract In Iroquois culture women have always shared equal treatment with men. They regard women...»

«Turkey Turquie Türkei Report Q204 in the name of the Turkish Group by Ozlem GÜRBÜZ, Kerim YARDIMCI, Bahadir GÜRSOY, Ugur AKTEKIN and Zeynep SEDA AKSOY Liability for Contributory Infringement of IPRs Questions I) Analysis of current legislation and case law 1) Does your national law provide for liability for contributory infringement of IPRs, in respect of the offering or supply of means for working an invention, for enabling illicit commercial use of a trademark, for making a copyrighted or...»

«Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book The Psychology of Learning and Motivation, Vol. 54 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for noncommercial research and educational use including without limitation use in instruction at your institution, sending it to specific...»

«From A(pples) to Z(oom lenses) Extending the boundaries of multichannel retailing at Tesco.com Having an extremely strong existing brand, the power of the Internet, and our ability to use it these are the key factors to our success. There is virtually no limit to what we can sell, be it physical goods or services, and where we can sell it. Lama Wade-Gery jumped out of the white delivery truck and looked at her watch. Delivery was right on time. So was the launch of the spring catalogue for the...»

«QAD Enterprise Applications Enterprise Edition User Guide QAD Costing Introduction to Costing Cost Sets and Methods Setting Up Product Costing Product Costing Process Cost Management Cost Accounts Costing Impact by Module Cost Reporting Periodic Costing 78-0903A QAD Enterprise Applications 2010.1 Enterprise Edition September 2010 This document contains proprietary information that is protected by copyright and other intellectual property laws. No part of this document may be reproduced,...»

«Evolution of the Mind: 4 Fallacies of Psychology Some evolutionary psychologists have made widely popularized claims about how the human mind evolved, but other scholars argue that the grand claims lack solid evidence By David J. Buller KEY CONCEPTS • Among Charles Darwin’s lasting legacies is our knowledge that the human mind evolved by some adaptive process.• A major, widely discussed branch of evolutionary psychology—Pop EP—holds that the human brain has many specialized mechanisms...»

«The Early Neolithic Tor Enclosures of Southwest Britain By Simon R. Davies A thesis submitted to The University of Birmingham For the degree of Ph.D. Funded by the AHRC. i University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any...»

<<  HOME   |    CONTACTS
2016 www.book.xlibx.info - Free e-library - Books, abstracts, thesis

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.